Criteria for effective design, construction, and gene knockdown by shRNA vectors
نویسندگان
چکیده
BACKGROUND RNA interference (RNAi) technology is a powerful methodology recently developed for the specific knockdown of targeted genes. RNAi is most commonly achieved either transiently by transfection of small interfering (si) RNA oligonucleotides, or stably using short hairpin (sh) RNA expressed from a DNA vector or virus. Much controversy has surrounded the development of rules for the design of effective siRNA oligonucleotides; and whether these rules apply to shRNA is not well characterized. RESULTS To determine whether published algorithms for siRNA oligonucleotide design apply to shRNA, we constructed 27 shRNAs from 11 human genes expressed stably using retroviral vectors. We demonstrate an efficient method for preparing wild-type and mutant control shRNA vectors simultaneously using oligonucleotide hybrids. We show that sequencing through shRNA vectors can be problematic due to the intrinsic secondary structure of the hairpin, and we determine a strategy for effective sequencing by using a combination of modified BigDye chemistries and DNA relaxing agents. The efficacy of knockdown for the 27 shRNA vectors was evaluated against six published algorithms for siRNA oligonucleotide design. Our results show that none of the scoring algorithms can explain a significant percentage of variance in shRNA knockdown efficacy as assessed by linear regression analysis or ROC curve analysis. Application of a modification based on the stability of the 6 central bases of each shRNA provides fair-to-good predictions of knockdown efficacy for three of the algorithms. Analysis of an independent set of data from 38 shRNAs pooled from previous publications confirms these findings. CONCLUSION The use of mixed oligonucleotide pairs provides a time and cost efficient method of producing wild type and mutant control shRNA vectors. The addition to sequencing reactions of a combination of mixed dITP/dGTP chemistries and DNA relaxing agents enables read through the intrinsic secondary structure of problematic shRNA vectors. Six published algorithms for siRNA oligonucleotide design that were tested in this study show little or no efficacy at predicting shRNA knockdown outcome. However, application of a modification based on the central shRNA stability should provide a useful improvement to the design of effective shRNA vectors.
منابع مشابه
A streamlined method for the design and cloning of shRNAs into an optimized Dox-inducible lentiviral vector
BACKGROUND Short hairpin RNA (shRNA) is an established and effective tool for stable knock down of gene expression. Lentiviral vectors can be used to deliver shRNAs, thereby providing the ability to infect most mammalian cell types with high efficiency, regardless of proliferation state. Furthermore, the use of inducible promoters to drive shRNA expression allows for more thorough investigation...
متن کاملمهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19
Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells. Ai...
متن کاملShort-hairpin RNA-mediated gene expression interference in Trichoplusia ni cells.
RNA interference (RNAi) is rapidly becoming a valuable tool in biological studies, as it allows the selective and transient knockdown of protein expression. The short-interfering RNAs (siRNAs) transiently silence gene expression. By contrast, the expressed short-hairpin RNAs induce long-term, stable knockdown of their target gene. Trichoplusia ni (T. ni) cells are widely used for mammalian cell...
متن کاملDesign and cloning strategies for constructing shRNA expression vectors
BACKGROUND Short hairpin RNA (shRNA) encoded within an expression vector has proven an effective means of harnessing the RNA interference (RNAi) pathway in mammalian cells. A survey of the literature revealed that shRNA vector construction can be hindered by high mutation rates and the ensuing sequencing is often problematic. Current options for constructing shRNA vectors include the use of ann...
متن کاملA Method to Assess Target Gene Involvement in Angiogenesis In Vitro and In Vivo Using Lentiviral Vectors Expressing shRNA
Current methods to study angiogenesis in cancer growth and development can be difficult and costly, requiring extensive use of in vivo methodologies. Here, we utilized an in vitro adipocyte derived stem cell and endothelial colony forming cell (ADSC/ECFC) co-culture system to investigate the effect of lentiviral-driven shRNA knockdown of target genes compared to a non-targeting shRNA control on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BMC Biotechnology
دوره 6 شماره
صفحات -
تاریخ انتشار 2006